Ethos College

Curriculum Planning Group 2 Maths

Curriculum intent statement: Maths

Intent:

The intent of our mathematics curriculum is to provide pupils at Ethos with a foundation for understanding number, reasoning, thinking skills and problem solving with resilience so that they are fully prepared for everyday life and future employment. We aim to challenge the misconception that maths is difficult. We identify what students need to make progress and provide a curriculum, incorporating the aims of the National Curriculum, that meets SEND and SEMH targets and maximises the outcomes for those that have often missed out on previous essential learning in mathematics. We offer both Entry Level, Functional Skills and GCSE qualifications at Ethos depending upon a student's identified pathway through Key Stage 4.

Implementation:

Our teaching and learning are underpinned by an approach designed to develop student's understanding.

Baseline assessments and prior knowledge provide our starting point for planning and
teaching. We incorporate all the information we have gathered, academic targets, SEND and SEMH needs as identified on each pupil's one page profile, to provide a bespoke learning experience which takes into account additional needs, learning styles and gaps in curriculum of every pupil within each group

New concepts and skills are broken down into small connected and structured steps enabling application to range of contexts and pupils are given opportunities to practice skills and apply them to solve more complex problems. Links are made between other areas in maths, different subjects in school and real life situations. Pupils are encouraged to communicate, justify, argue and prove using mathematical vocabulary.

Knowledge is embedded using retrieval practice tasks at the start of each lesson and revision of key skills prior to extended learning. Marking and feedback addresses misconceptions promptly and enables interventions that are timely. Summative assessments are undertaken supportively each half term and we further develop
confidence by gradually building up pupils' familiarity with exam papers and requirements. Lots of topic revision and exam paper practice is provided in the weeks prior to the formal exam period each Summer term.

Impact:
At Ethos the mathematics curriculum ensures that the needs of all the pupils are met through high quality first teaching and intervention where appropriate.

Pupils achieve or exceed their expected targets in mathematics. Required grades are attained to enable pupils to follow their chosen Post 16 pathways. By addressing SEMH alongside academic requirements in lessons, pupils make exceptional progress towards their Boxall targets.

Pupils recognise that mathematics is essential in everyday life and develop resilience and confidence in becoming more independent learners. They are fluent in the fundamentals of mathematics and have a wide range of skills to apply to problems beyond their school environment

Year 1

Time	Key Subject Content	Sequencing
Half Term 1 : Sep-Oct	Entry Level Number: Count, Read, Write and Order.	Count, read and write numbers in numerals or words - Recognise different representations of numbers - Know the value of each digit in a number - Expanded form partitioning Recognise odd and even numbers - Compare and order numbers - Count on and back in one, ten, (hundred and thousand) from any number - Count on and back in steps of different numbers - Round numbers to the nearest 10 - Order a set of positive and negative numbers, including placing them on a number line

Memorising facts and lists can build the foundations for higher thinking and problem solving

Students build on their understanding of place value to develop a written method of addition and multiplication. Develop and rehearse the processes in written addition and subtraction. Calculations are presented in different contexts of money and measures to consolidate understanding of these processes. thousand ... ten thousand, hundred thousand, million none how many ...? count, count (up) to, count on (from, to), count back (from, to) forwards backwards count in ones, twos, fives, tens, threes, fours, eights, fifties, sixes, sevens, nines, twenty-fives and so on to hundreds, thousands equal to equivalent to is the same as more less most, least tally many odd, even multiple of, factor of sequence continue predict few pattern pair, rule relationship addition add, more, and make, sum, total altogether double near double half, halve one more two more... ten more... one hundred more connectively with peers

Opportunities will be planned for to enable the students to develop Boxall strands A to E which are:

Geometry: 2D and 3 D shapes

- Name and describe 2D shapes
- Sort shapes according to mathematical criteria
$-2 D$ and 3D shapes in the environment
- Name and describe 3D shapes
- Recognise reflective symmetry in simple case

Assess and review

Assess and review

- Know how to align in column addition

 and subtraction (understanding place value)- Understand subtraction as the inverse of addition
- Adding 2-digit numbers and tens
- Using apparatus to subtract
- Subtract one- and two-digit numbers
- Solve problems involving additions and subtraction
- Select method of calculation

the skills and

 knowledge being learned, to everyday life and careers.how many more to make ...? how many more is. than ...? how much more is ...? subtract take away how many are left/left over? how many have gone? one less, two less, ten less.. one hundred less how many fewer is ... than ...? how much less is ...?

2-D shape 2-D, two-dimensional corner, side point, pointed rectangle (including square), rectangular, oblong rectilinea circle, circular triangle,
triangular
equilateral triangle, isosceles triangle, scalene triangle pentagon, pentagonal hexagon, hexagonal heptagon octagon, octagonal quadrilateral parallelogram,
A. Giving purposefu attention
B. Participating constructively
C. Connects up experiences
D. Showing
insightful
involvement
E. Engaging connectively with peers

			this to inform where the students need to go next.		rhombus, trapezium polygon rightangled parallel, perpendicular 3-D shape 3-D, threedimensional face, edge, vertex, vertices cube, cuboid pyramid sphere, hemisphere, spherical cone	
Half Term 3: Jan - Feb	Number: Fractions Measures: Units - Time Number:Facts and patterns Number: Operations	- Recognising unit fractions such as $1 / 2$ and $1 / 4$, using them to find fractional quantities of shapes and numbers - Telling to time to o'clock, quarter-past, half-past and quarter-to on an analogue (and digital) clock - Know multiplication facts - Explore and record patterns of multiples - Understand the terms 'factor' and 'product' when calculating - Multiplications expressions using x	The learning of fractions is an extension in understanding of the number system. Learning how to calculate fractions of amounts by sharing in practical contexts, is a valuable experience before making the link to division. Students build on their understanding of fractions of shapes, using these shapes when sharing items into equal groups. The link between finding fractions of amounts and division is made. When finding fractions of amounts, students need to understand that this is division by sharing. Students learn the relationships between units of time and other key vocabulary involving time. Students learning to tell the time on analogue and digital clocks, using 12- and 24-hour notation. The learning in this week requires regular revisiting through natural daily activities and routines.	Understanding fractions, measures and the number system in reallife contexts. Make explicit links to the skills and knowledge being learned, to everyday life and careers.	fraction equivalent fraction mixed number numerator, denominator equal part equal grouping equal sharing parts of a whole half, two halves one of two equal parts quarter, two quarters, three quarters one of four equal parts one third, two thirds one of three equal parts sixths, sevenths, eighths, tenths ... hundredths decimal, decimal fraction, decimal point, decimal place, decimal	Opportunities will be planned for to enable the students to develop Boxall strands A to E which are: A. Giving purposeful attention B. Participating constructively C. Connects up experiences D. Showing insightful involvement

$\left.\begin{array}{|l|l}\text { and } \\ \text { Equipment } \\ \text { (Addition and } \\ \text { Subtraction) }\end{array} \quad \begin{array}{l}\text { - Know division facts } \\ \text { - Understand the operation of division } \\ \text { - Understand the inverse relationship } \\ \text { - Understand that multiplication can be } \\ \text { done in any order but division cannot } \\ \text { - Use division to solve problems/puzzles }\end{array}\right\}$

When learning multiplication tables, students should experience a blend of practical, visual activities, pattern spotting, generalising as well as rote learning.

Students build on their understanding of place value and multiplication and division facts to develop a written method of multiplication and division. Develop and rehearse the processes involved in written multiplication and division.
Pupils continue to solve problems involving addition, subtraction, multiplication and division, and demonstrate their understanding of the meaning of the equals sign. As they begin to solve problems combining all four operations, they appreciate the importance of the order in which operations are used.

An opportunity for teachers to consider the learning and development points.

The learning of fractions is an extension in understanding of the number system. Learning how to calculate fractions of amounts by sharing in practical contexts,

	equivalent proportion multiplication multiply multiplied by multiple, factor groups of times product once, twice, three times . ten times repeated addition division dividing, divide, divided by, divided into left, left over, remainder grouping sharing, share, share equally one each, two each, three each ... ten each group in pairs, threes ... tens equal groups of doubling halving array row, column number patterns multiplication table multiplication fact, division fact inverse square, squared cube, cubed	E. Engaging connectively with peers
Understanding fractions, geometry, measures and	As Above position over, under,	Opportunities will be planned for to enable the students to

Geometry:
Position, movement and pattern

Measures:

Units \&
Measuring Instruments

- Recognising and using in context simple fractions, including decimal notation in recording money and length. - Recognising simple equivalents ($3 / 6$ \& $1 / 2,2 / 8 \& 1 / 4,0.75 \& 3 / 4$.
- Interpreting a calculator display as money.
- Using a calculator to add and subtract money.
- Movements in a straight line and rotations.
- Mathematical vocabulary to describe position, direction and movement (including clockwise and anti-clockwise). - Coordinates.
- Compare objects and events using language for direct comparison using common standard units
- Choose and use simple measuring instruments, reading and interpreting number and scales with some accuracy, - Use a wider range of standard units
- Estimate with units of measure
- Express a length given in centimetres.
is a valuable experience before making the link to division.
Students build on their understanding of fractions of shapes, using these shapes when sharing items into equal groups. The link between finding fractions of amounts and division is made. When finding fractions of amounts, students need to understand that this is division by sharing

Work on fractions continued, in particular linking the images of quarter, half and three-quarters of a circle to fractions of a turn. Their understanding of fractions of a turn should be related to the movement of the minute hand on an analogue clock, introducing language of clockwise, o'clock and half past

Students learn measures and apply them to real life contexts.
statistics in real-
life contexts.
Make explicit links to the skills and knowledge being learned, to everyday life and careers.
underneath above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge centre corner direction journey, route left, right up, down higher, lower forwards, backwards, sideways across next to, close, near, far along through to, from, towards, away from clockwise, anticlockwise compass point north, south, east, west, N, S, E, W north-east, northwest, south-east, south-west, NE, NW, SE, SW horizontal, vertical, diagonal translate, translation
measure measurement size compare unit, standard unit metric unit
develop Boxall strands A to E which are:
A. Giving purposeful attention
B. Participating constructively
C. Connects up experiences
D. Showing
insightful
involvement
E. Engaging
connectively with peers

		- Express a price given in pounds and			
pence.			$	$	
:---	:---				

	measuring scale, division guess, estimate enough, not enough too much, too little too many, too few nearly, close to, about the same as, approximately roughly just over, just under, holds, contains container, measuring cylinder	
Statistics is really useful for daily life and has an instrumental role in other disciplines. It is important for developing critical reasoning. Statistics shows an example of maths being useful in real life. Students will start to realise that statistics is about describing a large amount of data simply either pictorially e.g. in a chart or numerically e.g. average. As the data is simplified more information is lost but the data as a whole becomes easier to understand and analyse. The concepts of mode, median and range can be taught through the measures or alternative data. It is important that students understand that mode and median are forms of average. Identifying the median will consolidate students' ordering skills, and the range	count, tally, sort, vote survey, questionnaire, data graph, block graph, pictogram represent group, set list, table, chart, bar chart, frequency table Carroll diagram, Venn diagram, label, title, axis, axes diagram most popular, most common least popular, least common	Opportunities will be planned for to enable the students to develop Boxall strands A to E which are: A. Giving purposeful attention B. Participating constructively C. Connects up experiences D. Showing insightful

Number:
Equipment

Geometry:
Angles Measures:
Units and measuring instruments

Geometry:
Perimeter and
area

- Choose a suitable method of computation, using equipment where appropriate.
- Use a basic calculator
- Identify an angle as smaller than a right angle, or bigger than a right angle.
- Choose and use simple measuring instruments, reading and interpreting number and scales with some accuracy. - Use a protractor to measure acute and obtuse angles to the nearest 10°
- Finding perimeter by adding lengths of sides.
- Find area by counting squares.
- Calculating area by multiplying length by width.
will support with the concept of subtraction finding the difference. Students work on averages and measurement should reflect their ability in other number work in place value and calculation When ordering numbers from a set of data, they can be introduced to averages. The median could be found once the numbers have been ordered, then leading on to finding the mean, consolidating their addition and division skills.

Students learn the basic functions of a calculator and how to input information to perform a calculation. They are encouraged to record the calculation prior to inputting it into the calculator as this supports them to work logically and check results. They learn this is an expectation for some questions within the assessment paper and will enable them to receive more marks if the correct methods are shown.

Students learn that angles are made where lines/sides meet. This is an understanding of angles as a measure of turn, but the 'turn' is static i.e. the sides of the shape are not turning. The angle understanding also incorporates a dynamic understanding in which movement is made.
angle, is a greater/smaller angle than degree right angle acute angle obtuse angle reflex angle reflection straight line ruler, set square angle measurer, compass, protractor

